Lainiotis filter, golden section and Fibonacci sequence

نویسندگان

  • Nicholas Assimakis
  • Maria Adam
  • Chrissavgi Triantafillou
چکیده

The relation between the discrete time Lainiotis filter on the one side and the golden section and the Fibonacci sequence on the other is established. As far as the random walk system is concerned, the relation between the Lainiotis filter and the golden section is derived through the Riccati equation since the steady state estimation error covariance is related to the golden section. The relation between the closed form of the Lainiotis filter and the Fibonacci sequence is also derived. It is shown that the steady state Lainiotis filter computes the state estimate using a linear combination of the previous estimate and of the current measurement with coefficients related to the golden section. A Finite Impulse Response (FIR) implementation of the steady state Lainiotis filter is also proposed, where the filter computes the state estimate as a linear combination of a well-defined set of the last measurements with coefficients which are powers of the golden section. Finally, the scalar generic stochastic dynamic system is considered and the relation between its parameters and the golden section is investigated. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Golden section, Fibonacci sequence and the time invariant Kalman and Lainiotis filters

We consider the discrete time Kalman and Lainiotis filters for multidimensional stochastic dynamic systems and investigate the relation between the golden section, the Fibonacci sequence and the parameters of the filters. Necessary and sufficient conditions for the existence of this relation are obtained through the associated Riccati equations. A conditional relation between the golden section...

متن کامل

A Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence

In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore,  new sequences have been used in order  to introduce a  new class of series. All properties of the se...

متن کامل

Fibonacci sequence, golden section, Kalman filter and optimal control

A connection between the Kalman filter and the Fibonacci sequence is developed. More precisely it is shown that, for a scalar random walk system in which the two noise sources (process and measurement noise) have equal variance, the Kalman filter’s estimate turns out to be a convex linear combination of the a priori estimate and of the measurements with coefficients suitably related to the Fibo...

متن کامل

A Generalized Fibonacci Sequence and the Diophantine Equations $x^2pm kxy-y^2pm x=0$

In this paper some properties of a generalization of Fibonacci sequence are investigated. Then we solve the Diophantine equations $x^2pmkxy-y^2pm x=0$, where $k$ is positive integer, and describe the structure of solutions.

متن کامل

A Note on Fibonacci Matrices of Even Degree

This paper presents a construction of m-by-m irreducible Fibonacci matrices for any even m. The proposed technique relies on matrix representations of algebraic number fields which are an extension of the golden section field. The explicit construction of some 6-by-6 and 8-by-8 irreducible Fibonacci matrices is given. 2000 Mathematics Subject Classification. 11B39, 15A36.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013